Sorry I am still working on this, so it is still in LaTeX: \begin{table}[ht] \begin{tabular}{|c|r|r|r|r|r|r|r|r|c|r|} \hline Nodes & E$_{\rm ext}^1$ & E$_{\rm int}^2$ & Wait$^3$ & Comm$^4$ & List$^5$ & Integ$^6$ & \multicolumn{1}{c|}{Total} & Eff.$^7$ & Speedup \\ \hline 1 &21349.6 & 137.6 & 0.0 & 0.1 & 2077.5 & 32.7 &23596.9 = 6.55 h & 100.0\% & 1.0 \\ \hline 2 &10814.8 & 77.2 & 228.9 & 85.9 & 1101.6 & 17.2 &12325.6 = 3.42 h & 95.7\% & 1.9 \\ \hline % Commented numbers are new from ANL % 2 & 9850.3 & 72.1 & 79.7 & 82.9 & 1214.1 & 16.2 &11315.4 4 & 5358.0 & 47.1 & 246.9 & 133.3 & 608.8 & 9.1 & 6403.2 = 1.78 h & 92.1\% & 3.7 \\ \hline 8 & 2658.3 & 30.8 & 252.5 & 170.8 & 354.9 & 5.4 & 3472.7 = 0.96 h & 84.9\% & 6.8 \\ \hline 16 & 1345.2 & 21.9 & 358.2 & 223.3 & 175.0 & 4.3 & 2127.9 = 0.59 h & 69.3\% & 11.1 \\ \hline \end{tabular} \end{table}
E ext : External energy terms (electrostatics + Lenard-Jones) E int : Internal energy terms (bond, angle, dihedral) Wait : Load unbalance Comm : Communication time (Vector Distr. Global {Sum,Brdcst}) List : Nonbond list generation time Integ : Time needed to integrate equations of motion Total : Total elapsed time Eff : Efficiency = speedup divided by number of nodes Speedup: Time for N nodes divided by time for one node.